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Analytical Approximations for the Hierarchically 
Constrained Kinetic Ising Chain 
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The hierarchically constrained kinetic Ising model in one dimension is reviewed, 
and the results of several analytical approaches to the model are presented. Two 
standard approximation schemes, an effective-medium approximation and a 
mode-coupling approximation, are shown to fail. A new class of approxima- 
tions, termed cluster approximations, is better suited for the model. It yields 
good results for the spin autocorrelation function, and also elucidates important 
general properties of the model--its connection with defect-diffusion models and 
the asymptotic long-time behavior of the autocorrelation function. 
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1. I N T R O D U C T I O N  

In ref. 1 the present authors have introduced a hierarchically constrained 
kinetic Ising model. The model consists of a semi-infinite Ising chain 
with an asymmetric constraint allowing a spin to flip only when its right 
neighbor is in the up-spin state. The constraint is purely kinetic. There is 
no interaction energy between different spins. The asymmetric kinetic 
constraint introduces dynamic correlations, and represents a simple realiza- 
tion of "hierarchically constrained dynamics" in the sense proposed by 
Abrahams e t  al. (2) 

We calculate the normalized spin autocorrclation function q~(t), which 
we often simply call the relaxation function, from the decay of the orienta- 
tion (a0) ,  of the spin at the origin, which initially is prepared in the 
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up-spin state. For  the discussion of the basic equations we refer to ref. 1. 
Here we only give the transition rate for the flip of spin i, 

wi(~0, ~r~ .... ) =  ( / /4 ) [1  + ( 1 - 2 c ) a i ] ( a i + a  + 1) 

where c=(1-f-(<O>eq)/2  , 0 " =  _+1, from which the master equation for 
single-spin-flip dynamics (3) is obtained. The inverse of the at tempt rate F is 
often chosen as the unit of time, such that F can be dropped. 

First results for the relaxation function of finite and infinite chains are 
given in ref. 1. Here we present the results of several analytical approaches. 
In Section 2 of this paper we apply two standard approximation methods 
to our model. First we use an effective-medium approximation,  then we 
derive a mode-coupling approximation. In Section 3 a new approximation 
method, the cluster approximation,  is derived. Results for different orders 
of the approximation are calculated and discussed in detail. It turns out 
that for our model there exists a close connection between the cluster 
approximation and defect-diffusion models. (4'5) Using the result of a renor- 
malization method presented in ref. 6, we are able to give an estimate for 
the asymptotic long-time behavior of the relaxation function for c ~ 0. 

2. TWO S T A N D A R D  A P P R O X I M A T I O N  SCHEMES 

2.1. An E f fec t i ve -Med ium Approx imat ion  ( E M A )  

The normalized spin autocorrelation function 

~ ( t ) -  <A~~ 3,~o(O)>~q (1) 
4c(1 - c) 

where d~r= ~ - ( a > ,  <a> = 2 c - l ,  is derived from the decay of the orien- 
tation (er 0 >t of the spin at the origin, which is prepared in the up direction 
at t = 0. The coupling of spin 0 to its right neighbor at site 1 is accurately 
taken into account, while spin 1 is treated as belonging to an effective 
medium, in which spins flip independently with a frequency-dependent flip 
rate F(s). The main results of this approximation were presented in ref. 1. 
Here we give some additional results, in particular the asymptotic behavior 
of ~b(t) at long times. 

The frequency-dependent flip rate Fl(S) was obtained as ~1) 

Fl(s ) = c - �89 {s + 1 - [-(s + 1) 2 - 4c(1 - c)] 2/2 } (2) 

The inverse Laplace transform of 

f , ( s )  - e - r , ( s )  (3) 
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is found to be given by 

7(t) = [c(1 - c ) ]  1/2 e x p ( - t )  I~(2[c(1 - c)t] 1/2) 
t 

(4) 

where I x ( x  ) is a modified Bessel function. For t ranging from 0 to ~ ,  
y(t) decreases monotonically from c ( 1 -  c) to O. The rate equation for the 
time-dependent probability p ( t )  that a spin of the effective medium, like 
spin 1, points in the up direction reads 

f2 / ~ ( t ) = - c [ p ( t ) - - c ] +  d t ' v ( t - t ' ) [ p ( t ' ) - c ]  (5) 

The second term on the r.h.s, is a memory integral with the kernel 7(t). 
Here p ( t ) -  c is the deviation of the probability p from its equilibrium 
value. 

The Laplace transform r of the spin autocorrelation function, given by 

r = [s + Fl(S)] -~ (6) 

has a branch cut on the negative real s axis between Sl and s2, where 

sl,2 = - 1 _+ 2[c(1 - c ) ]  1/2 (7) 

For c < 1/2, it has in addition a simple pole at the origin. Expressing the 
inverse Laplace transform by the discontinuity of r across the branch 
cut, one obtains 

1 - 2c  ds  eS t - - 

For c ~ 1/2, the asymptotic expansion of the integral for long times yields 
(see also Section 3.2) 

( s l  - s2) 1/2 exp(- Is l l  t) 

r 1 6 2  4xf~ Is1] t3/2 (9) 

For c = 1/2, the asymptotic behavior is 

r ~ (2~rot) t/2 (10) 

The blocking transition at c =  1/2, below which r  is nonzero, is an 
artefact of the approximation. In ref. 1 a detailed argument for the absence 
of such a transition was given. The argument is supported by our 
numerically exact calculations for finite chains (s) and by the Monte Carlo 
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simulations. The asymptotic long-time behavior (9) for c < 1/2, however, 
is of the same form as obtained by more accurate approximations (see 
Section 3). 

2.2. A Mode-Coup l ing  Approx imat ion  ( M C A )  

For the derivation of a mode-coupling approximation the dynamical 
equations are usually formulated in terms of time-dependent observables 
rather than probabilities. An observable may be any function of the states 
of the system. It is more convenient for our model to describe a state by 
the vector n of site occupation numbers ne (ni= 0 or 1) than by the spin 
variables a~ = _+ 1. The time dependence of an observable is generated by 
the adjoint L + of the Liouvillian operator defined by the master equation 
for the model. L + is given by 

L +A(n) = ~ wi(n)[A(n (0) - A(n)] (11) 
i 

where A(n) is any state function, n (~ is the state obtained from n by flipping 
the spin at site i, i.e., by replacing ne by 1 -ne .  The transition rate we(n) for 
spin i reads 

wi(n) = [ c +  (1 --2c)ni]ni+l (12) 

The first factor fulfills the condition of detailed balance. The factor rti+ 1 
expresses the kinetic constraint. The time-dependent state function A,(n) is 
obtained as 

At = eL'tA (13) 

A mode-coupling approximation is an approximation for a memory 
function, for which a formal expression can be derived using the projection 
operator formalism of Mori and Zwanzig. (7) We select the set of ortho- 
normal state functions 

Ai=Ane/[c(1 - c ) ]  1/2, /= in teger  (14) 

where Ane= ne-  (ne)= n i - c ,  and define a projection operator P by 

PA = Ae(Ai, A) (15) 

after introducing a scalar product 

(A, B) = ~  po(n)(A(n))* B(n) (16) 
[] 
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with the equilibrium probabilities p0(n) of the states n. Eliminating state 
functions outside the subspace given by (14) by means of the projection 
operator 

Q = I - P  (17) 

one arrives at an equation of motion for the normalized autocorrelation 
function of occupation number fluctuations (equivalent to the spin-auto- 
correlation function) 

(b(t)= (Ao, Ao, t) (18) 

which contains a memory term. This equation reads 

f2 ~(t)+c~(t)= dt' M(t')~(t-t ')  (19) 

The kernel M(t) of the memory term on the r.h.s, is the memory function. 
The formal expression for M(t) is 

M(t) = c(1 - c)(AoAl, eQL "Ao A,) (20) 

The standard recipe for a MCA is to drop the projection operator Q 
in the reduced time evolution operator exp(QL + t) and to factorize the rest. 
This yields the approximate memory function 

M(t) --- _Q(t) = c(1 - c)r (21) 

In the factorization we have used the fact that the correlation functions 
(A j, Ai,,) are site-diagonal, which is a consequence of the asymmetry of the 
kinetic constraint in our model. 

Equations (19) and (21) represent the simplest MCA for our model. 
Two properties of the solution to these equations are easy to derive. 

A. A solution ~(t) which tends to a finite nonzero value for t ~ 
cannot exist for any value of c. This follows by taking the Laplace 
transform of (19), which yields 

(s + c) ~(s) = 2~(s) ~(s) + 1 (22) 

If ~b(t) tended to a finite nonzero value, M(t) would, too. This is not 
compatible with Eq. (22) for s-+ 0. 

B. For  c < g  the solution ~b(t) is not a monotonically decreasing 
function of t. A lower hound to g is 1/3. This is proved by showing that the 
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assumption of monotonic decay leads to a contradiction for c < 1/3. First 
we transform (19) into the integral equation 

fo f" t") dt" ~(t)  = e ~' + &' e <~'-"~ # ( t " )  ( J ( t -  
~0 

(23) 

The iterative solution of this equation contains only positive terms; there- 
fore ~b(t)/> 0 for all t i> 0. A lower bound to ~b(t) is given by the first term 
on the r.h.s, of (23). If we assume that ~b(t) is a monotonically decreasing 
function, we can estimate in Eq. (19) 

~(t)>~O(t)I-c+c(1-c) f2 dt' e-2Cc ] (24) 

Since the expression on the r.h.s, becomes positive for t--* oo if c < 1/3, the 
assumption cannot hold for concentrations below this. Numerical integra- 
tion of Eqs. (19), (21) in fact shows that the concentration ~ below which 
the solution goes nonmonotonic  is considerably higher. In Fig. 1 we show 
the numerical solution for several concentrations, indicating the divergence 
of the MCA solution for c < 0.5. 

We only note that properties (A) and (B) also hold if the subspace 
(14) of state functions is extended to include the two-site functions 

AiA~+~ for all integers i 

1 

e -  .1 

,01 

'\"\"\C'~ 0 7 \ 

.1 1 10 100 

(25) 

time 
Mode coupling approximation of ~b(t) (dashed lines) compared with exact solution Fig. 1. 

(full lines; obtained from numerical results for finite chains ~ which are indistinguishable from 
exact results for the given concentrations and time domain) for various concentrations c. 
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or both the two- and three-state functions 

AiAi+ l, AiA,+ ~A,+2 for all integers i (26) 

(cf. Sections 2.4 and 2.5 of ref. 8). 
Property A is gratifying since our model does not have a sharp block- 

ing transition to a nonergodic phase. (1) Property B, however, is a serious 
defect. We expect that the spin-autoeorrelation function of our model at all 
up-spin concentrations has no oscillating component and decays to zero 
monotonically with increasing time. This expectation is borne out both by 
the results of Monte Carlo simulation and by numerically exact calcula- 
tions for finite chains. (1) We conclude that straightforward applications 
of the MCA fail for our model (as they do for related kinetic Ising and 
lattice-gas models(8'9)). In our opinion the approximation schemes of 
both MCA and the EMA are too s~mple to describe the subtle dynamic 
correlations generated by the kinetic constraints in these models. 

3. T H E  C L U S T E R  A P P R O X I M A T I O N  

It is one of the main problems in the dynamical theory of Ising models 
that no generally applicable approximation schemes are known. As seen in 
the last section, the EMA and the MCA both fail for our model. This being 
the state of things, we found that it is worthwhile to look for an 
approximation scheme which better reflects the detailed properties of our 
model. 

For  small c most of the spins are down and one could conclude that 
the first up spin of the chain plus some of its right neighbors is essential for 
the relaxation of spin 0. Therefore we define a set of variables which 
explicitly takes account of the "cluster including the first up spin." After an 
appropriate termination of the corresponding system of equations this 
leads to a usable approximation for the relaxation function of spin 0. 

3.1. The  Var iab le  Set  

As mentioned above, the first up spin of a chain configuration might 
contribute essentially to the relaxation of spin 0. This leads us to have a 
closer look at configurations where for fixed k, m > 0, spins 0, 1,..., k -  1 are 
down, spin k is up, spins k + 1,..., k + m -  1 are in some subconfiguration, 
and all other spins are not specified. The spin k plus the m -  1 spins to the 
right of it is called the cluster of length m. For example, the clusters of 
length m = 2  are given by (T, ~) and (T, i' )- Our interest is to find a 
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system of equations for the probabilities of all clusters of length m, which 
we define as 

?:;Jl,.,  Jo,-l(t ) 

=-P(no=nl . . . . .  nk_l=O, n k = l ,  nk+l ,=j l  ..... n~+m l~-Jm-1;t) (27) 

As a short-hand form for all probabilities of clusters of length m we shall 
use the symbol P<k m). 

Below we will calculate the equations of motion for the probabilities 
of clusters with length m. We shall see that they couple to those with length 
m +  1. Therefore we need some approximation scheme to get a closed 
system o f  equations for fixed m. There are several possibilities to achieve 
this: 

(a) Factorization of the last cluster element: 

p1,;l,...,jm 1,1 ~_ cpl,+l,...,+m_l 
(28) 

pl,jl,...,jm-l,o (l C) pl, jb...,jm I 

Often we shall call this method normalfactorization. 

(b) Combined factorization of loss and gain term: If a function 
p~,J~,....Jm l,J,, is found in the loss or gain term of some "reaction pair," both 
the loss and gain terms are factorized as defined in (28). 

This possibility is unusual, since it may treat the same function dif- 
ferently according to its "reaction partner." The idea to use this factoriza- 
tion method is motivated by the hope that errors introduced by the 
factorization of one of the terms are compensated by corresponding errors 
(with opposite sign) in its reaction partner. We shall see below that this 
approximation scheme indeed gives better results than possibility (a). Note 
that compensation only works for clusters with length m > 1, because it 
does not make sense to approximate the function P~ for m = 1. For obvious 
reasons we shall often call this approximation method compensating 
factorization. 

We want to solve the initial-value problem where spin 0 is up and all 
other spins are in equilibrium. In addition, we restrict our attention to the 
case of an infinite chain--finite chains may be calculated in the same 
manner, with additional equations for an adequate breakoff. ~6) The initial 
values for our variables are then 

p~,Jl,...,Jm l ( t = O ) = 0  k~> 1 (29) 
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For the equilibrium values we get 

m 1 

plk'Jl'""Jm-lleq=(1--c)kc U [1--C--(1--2C)jm,] ( 3 0 )  

r n ' = l  

We are interested in the relaxation function ~b(t) of spin 0. To find the 
connection between ~b(t) and ~D{m} --Z- , we rewrite the equation of motion for 
( n o )  . as 

c~t(no) ~ = ((1 -- no)n1 ) -- ( n l )  + c2 

= P l ( t ) - c ( 1 - c )  

= ~ p,,Jz,...,Jm ~ ( t ) - c ( 1 - ~ c )  (31) 
{Jm'} 

where the sum is taken over all subconfigurations of the spins k + m'  for 
m ' =  1,..., m -  1. For the relaxation function ~b(t)= ( ( n o ) t - c ) / ( 1  - c )  we 
arrive then at 

1 pl(t  ) _ c  (32) 
= c 

or after Laplace transformation 

where ~(s) is defined by 

(33) 

~(s) =- dt e -~' ~(t)  (34) 

and Pl i ' Jm-l(s  ) is defined correspondingly. 
Note that cluster functions p~m) with k = 0 should not be included into 

our set of variables, because they can be expressed by pc,-) and therefore a k > O ,  

depend on the rest of the set of variables. The reason for this is the choice 
of our special initial conditions that all spins except spin 0 are in 
equilibrium. For  example, for Po ~1 we could write 

P ~ ' =  - ( ( 1 - n o ) n , )  + ( n , )  = - P I  + c  

3.2. Clusters of  Length 1 

As a first application, we perform the cluster approximation for 
clusters of length m =  1. For k =  1 .... our main variables are P~(t). In 
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addition, we get couplings to p l l ,  which are factorized by using (28). 
Writing down the rate equations for all P~, we have 

8tP~= -cP~+(1-c)PU_l-(1-c)P~+cP~+l (35) 

for k > 1. The first and the third term on the r.h.s, are the loss terms. With 
probability c, spin k -  1 can flip up. Or, if both spin k and spin k + 1 are 
up (taken into account in p~l), spin k can flip down with probability 
( 1 - c ) .  The second and the fourth term are the gain terms and emerge 
from the reversed processes. With probability (1 - c), spin k -  1 flips down 
if spin k - 1  and spin k are both up (taken into account in p~l_ 1). Or, if 
spin k is down and spin k + 1 is up, spin k flips up with probability c. 

Equation (35) holds for k =  1, too, but can be further simplified by 
using the above relationship between P0 u and PI. This leads to 

8,PI = c(1 - c ) -  P1 - (1 - c)Pll I + cP~ (36) 

Then the normal factorization (28) yields the following system of 
equations: 

Otpl l  = - E1 + c ( 1  -c)]p11+cP~+c(1 - c )  

cg,p~ = c(1 - c) Pg_ , - c(2 - -  c)P~ + cPg + 1 for k > l  
(37) 

Taking the Laplace transform with respect to time yields 

Es+ 1 + ~(1 - c ) ]  Pll - c ~  

- c ( 1 -  c)Pl~ + Es+c(2-c)]P~ -ePX3 
" . .  " , ,  " . .  

- c ( 1 - c ) P  1 l+[s+c(2-c)]P~-cP~+l=O 

=c(1-e)/s 
=0 

(38) 

Equations (38) form a tridiagonal system of equations of a very simple 
form--nearly all coefficients of the 1.h.s. are "diagonally equal" and only the 
first equation has a nonvanishing r.h.s. Such systems of equations can be 
transformed into a continued fraction in the following way: (1~ Dividing 
the first of Eqs. (38) by Pi 1 yields P11 in terms of -1 - i  Pz/P1. Inserting this 
expression into (33), we obtain 

1 c c 1 

~(s) = s ~ + s 2 s + 1 + c(1 - c) - e_ff~/P 1, (39) 
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Dividing the kth equation ( k >  1) of (38) by P~ and solving for ~1 ~~ Pk/Pk- I, 
we arrive at the recursion relation 

P~ c(1 - c )  
P~- I  = s + c(2 - e) - e /~ + 1/J~ 1 for k > 1 (40) 

which leads to the continued fraction for ~(s). The fix point of iteration 
(40) can easily be calculated. The two solutions are 

~1 s+c(2_C) {l +_[1 4c2(1- c)]1/2} 
pl  2c [ s + 7 ~ - ~ ] 2  j (41) 

Below we shall see that the ( - )  sign must be chosen for the relaxation 
function to relax to 0 for t--+ oo. This sign corresponds to the stable fix 
point, which is reasonable, since the effect of a small change imposed on 
the chain at site k', say, should decay (not grow) with increasing distance 
from k'. 

It is instructive to study the expansion of the relaxation function (39) 
for small s in detail. For ~b(t) to decay to 0 for all c, all coefficients of the 
negative powers of s should vanish. Second, with the definition of the 
Laplace transform (34), the coefficient of s o is just the mean relaxation time 

fo (b(t) dt 

1 -c(1 - c )  
c 3 (42) 

In the last step we used the small-s expansion of (39) together with (41). 
Since f is finite for nonzero c, this ensures that ~b(t) decays to 0 for t ---, oe. 
For the ( + )  sign in (41) this does not work. We see that f ~ c  -3 for 
the smallest concentrations. However, from Monte Carlo simulations it 
can be seen that "~> 1/c 5 for small concentrations c. This shows that at 
least the cluster approximation of first order falls short for the smallest 
concentrations. 

As a third point, we calculate the asymptotic long-time behavior of 
~b(t). Watson's lemma (1~) states that the behavior of ~(t--+ oo) is determined 
by the behavior of ~(s) in the neighborhood of its rightmost singularity in 
the complex s plane. ~(s) has four singularities, which all are real: There is 
a pole at So = 0, a branch cut between 

sl/2 = - c[2 - c T 2(1 - c) 1/2] (43) 
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and another pole at s3 = - (1 + c) which is only present for c > 0.62. By the 
above discussion it is clear that ~b(s) is continuous at s = so. The complex 
inverse Laplace integral can therefore be written as 

1 ( .  

{b(t) = ~ni | ds ~(s) e ~' (44) 
J c  

with C denoting the contour around the branch cut between sl and s2. 
The contribution of the pole at s = s 3 is omitted, here, because it does not 
contribute to the asymptotic behavior. Calculating the discontinuity of ~(s) 
across the cut, we find 

c f(2 ds ( s l -  s)l/2 ( s -  s2) 1/2 (45) 
~b(t)= - n  , ( s + 2 - e Z ) 2 + ( s L - s ) ( s - s 2 ) / 4  est 

Since the rightmost singularity is given by s = s l ,  the use of Watson's 
lemma yields 

1 
~(t-~ 

~ ) - 2nl /2s~(1-  c) 3/4 r e + ( 1 - c )  1/2] 
t -  3/Z esl  t (46) 

with sl given by (43). 
As a visualization of the validity of the approximation for different c, 

we present Fig. 2. For  concentrations c >  0.5 the cluster approximation of 

1 

-s- .1 

.01 
.1 1 10 100 

time 

Fig. 2. Double-log plot of ~b(t) for various concentrations c. The dashed lines are obtained 
from the cluster approximation with m = 1. Full lines represent the exact results (obtained 
from numerical results for finite chains ~1) which are indistinguishable from exact results for the 
given concentrations and time domain). 
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first order gives good results. For smaller concentrations the approximated 
relaxation function decreases too fast compared with the exact solution. 

3.3. Equiva lence  of  the  First A p p r o x i m a t i o n  ( m = l )  w i t h  a 
D e f e c t -  D i f fus ion  Prob lem 

We first formulate the equations of the (m = 1)-cluster approximation 
in terms of a defect-diffusion problem. With Eqs. (37), which are obtained 
by "normal factorization" for m =  1, together with Eq. (31), the total 
probability for finding the first up spin somewhere on the semi-infinite 
chain k = 0, 1, 2,... is conserved, as it should be. This is expressed by the 
equation 

Defining 

k = l  

(47) 

pk= -AP~, k~> 1 (48) 

where 

Apl p1 --k= k--e~leq 

with the equilibrium probabilities 

P~leq = c(1 - c) ~ 

we find that <Ano>,= < n o > , - c  is given by 

Initia~l conditions are 

(49) 

(50) 

corresponding to 

<Ano>,= k pk(t) (51) 
k = l  

pk(t=O)= P~leq = c(1--c) k 

( ano>,_o= 1 - c  

For p~(t) the equations 

0,pl( t)  = [1 +c(1 --c)]p,(t)+cpz(t ) 

3,pk(t)=--C(2--c)pe(t)+c(1--c)p~ ,(t)+cpk+l(t) 

(52) 

(53) 

(54) 
k>2) 

822/73/3 4-I3 
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hold. Equation (54b) can be interpreted in terms of hopping of a defect. Let 
us interpret Pk as the probability for finding the defect at site k. Equa- 
tion (54b) then describes biased diffusion of the defect with asymmetric 
hopping rates (for k/> 1) 

w~.~+l=c(1-c) 

W k + l ~ k  ~ C  
(55) 

Equation (54a) is the result of hopping between sites 1 and 2 with 
hopping rates (55a), (55b) and escape from site 1 to site 0 with escape rate 
unity. The escape of the defect corresponds to relaxation toward equi- 
librium at site zero. According to (51), the deviation from equilibrium 
( A n o ) t  is given by the probability that the defect has not yet escaped. The 
initial probability distribution for the position of the defect at time t = 0, 
which is normalized to the initial value (53), is given by (52). 

We now show how the asymptotic result (46) for the relaxation 
function of the (m = 1)-cluster approximation can be obtained for small c 
from the continuum limit of this defect-diffusion problem. In the limit of 
low concentration c,~ 1 this defect-diffusion problem can be considerably 
simplified and solved by standard methods. First note that for c ~ 1 the 
rate of escape from site 1 to site 0 is much higher than the rate for a jump 
back from site 1 to site 2. Accordingly, the probability P l will be negligibly 
small (except at very short times). We therefore set 

p l ( t  > 0) = 0 (56) 

which corresponds to replacing Eq. (54a) by an absorbing boundary condi- 
tion. Second, since the characteristic length of the initial probability 
distribution is c -1, for r ,~ 1 a continuum approximation can be applied. 
Replacing the discrete site probabilities p ~ ( t ) = - p ( x ~ ,  t) by the continuous 
probability density p(x ,  t), we obtain the continuum version of Eq. (54b) as 

O,p(x ,  t) = c ~32p(x, t) + c 2 Oxp(x ,  t) (57) 

to lowest order in c. This is a diffusion equation for diffusion with drift in 
a constant force field. The diffusion coefficient is D = c, and the product of 
mobility B and force F is given by B F =  - c  2. The force is directed in the 
negative x direction. In the same approximation, the initial condition 
becomes 

p ( x  >1 1, t = O) = c exp( -ex )  (58) 
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which contains the Boltzmann factor for the potential energy of the defect 
in that force field. For c ~ 1 we introduce only a small error by shifting the 
boundary from x = 1 to x = 0. The boundary condition then is 

p(x = 0, t > 0 ) = 0  (59) 

We need to solve Eq. (57) with initial and boundary conditions to obtain 

( A n o ) t =  d x p ( x ,  t) (60) 

This is achieved by substituting 

" C : c . t  

(61) 
p ( x , t ) = e x p  - ~ x -  ~ T(x,~) 

which transforms Eq. (57) into the ordinary diffusion equation for gJ(x, r): 

~, ~(x, r) = 63~ ~(x, ~) (62) 

Using standard methods for the solution of the diffusion equation, (12) we 
arrive at the result 

[ 1 + 2  c a c = L ( ~ )  ~] erfc ( ~ x ~ )  - c  x/~exp c 2 <3no), 

the asymptotic long-time behavior of which is given by 

1 e x p ( - c 3 t / 4 )  
( A n o >  t ~ (c/2)3 (ct)3/2 (64) 

3.4.  C l u s t e r s  o f  L e n g t h  2 

In the case of clusters of length m = 2  we have to deal with the 
variables p~o and p~l. The corresponding system of equations is obtained 
in a similar manner as in Eq. (35): 

O,p{O = _ plO + c(1 - c) 2 - cP11 ~ + (1 - -  c ) P {  11 

10 11 - n l O 1  Otp11= _ p { , + c 2 ( l _ c ) _ ( 1  _ c )  p l l l + c P 2  . . ~ c P 2  _ (1  - C J Y l ~ '  r~ l l l  _~_ c /~  1 

63 p l O  to (1 - -  c ) p n ~  I n l O l  = c P ~  + -- k > l  (65) c r  k +(1  _, , , in - - c ) r  k , t k 

11 63,-kPll = -- cP~ 1 + (1 -- c) p k l 1 1 1  - -  ( 1 -- C) p~l  + c p ~ O l  + c p  k +1 

( 1 - - c ) P ~  1 1 -  -1ol  - + c r  k , k >  1 
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where corresponding loss and gain terms are written in pairs. In the first 
two of Eqs. (65) the variables PoU~ c(1 - c ) -  PIi~ and P0m= c 2 -  Plll are 
eliminated as discussed above. 

All functions representing clusters of length 3 are to be approximated. 
This time we will use the "compensating factorization method" [-see (b) in 
Section 3.1]. Performing this factorization and at the same time Laplace- 
transforming Eq. (65), we get 

(S -~- 1 71- C2)II~] 0 - -  C(1 - -  C)/D11 1 = C(1 - -  C)2/S 

=-c2P] ~ + (s + 2 - c 2 ) p l l  _ ~ p { o _  ~p~,  = c2(1 _ ~)/~ 
(66) 

_ (~ _ c)~ p ~ l  + (s  + c)  p~o = o 

- - C ( 1  - - C ) / ~ l l  1-~-(S-J- 1 ) l ~  1 - - c P  1 0  -11 1 - - C P k + l  = 0  

We will now cast Eq. (66) into a tridiagonal form which allows the 
transformation into a continued fraction expansion. As a first step, we 
change our variables from p)o, p)l to P) = ~1o + p)l,  p~  ( j =  1, ...): 

(s + 1 + c ~ ) P l -  (s + 1 + c)Pl ~ = c(1 -c)~/s  

- c 2 P l  + (s + Z)P[~-cP~ =c~(1-c ) /S  
(67) 

- ( 1 - c )  2 P ~ l + ( s + c ) P ~ - ( s + c ) P ~  ~ = 0  

- ~ ( 1  - c )  , ~ _  1 + (~+  ~ )~ I  c P ~ + ~ = 0  

By that procedure, we have replaced the two elements - c r ' ) ~  c P  u by 
one element. To obtain the desired tridiagonal form we only need to 
eliminate p~l_ ~ in (67d) using (67c), and get rid of the r.h.s, of (67b) using 
(67a). We end up with 

(s + l +e2)p , , -(s+ 1 +c)p,, , =c(1-~.)2/s 

- c ( s  + 1 +c)Pl + (s + 2 - c  + c2)f'l ' - c ( 1  - c ) P "  =0 

-- (1--c)2PI~_, + (s + c).O~ P"  - (s+c) k =0 

- c ( s  + c)P~ + (s + 1 - c  + d ) P " - c ( 1  -c)P'~ + , =0 

�9 -. - .  . ,  ~ (68)  

In a similar manner as in Section 3.2, a continued fraction expansion of 
~(s) can be derived. It is given by 

1 c c ( 1 - c )  1 (69) 

,7(s) s s + 1 + c 2 = -- - -  - J  + S 2 C(S + 1 + c )  2 

s + 2 - - c ( 1  c) c(1 -1 -11 _ _ - - c ) p 2 / p  1 
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with 

c(1 C) 3 
c(1 - c)  p r~_ _ - ( 70 )  

c(s + c) 2 
S+C 

S -t- 1 - -  C(1  - -  C)  - -  C(1  - -  C)  p l +  1/ /~11 

for k =  2 .... The recursion relation (70) is derived by eliminating ~ 1 / ~  
�9 ~ k  / ~ k  

from the two recursion relations relating ~k~11- 1/~k/~l to P~~I1/Pk ~~ and ~1/~11 to 
~ k / ~ k  

pl  /~H The fix point of iteration (70) can again be calculated, resulting k + 1 / ~ k  " 

in 

P~ = ~  [1 _ ( t  _4a'~1/21 (71) 

with 

c(1 - e)3(s  + 1 - c + c  2) 
a - (72) 

s + c  

and 

c(1 - c )  3 - c(s + c) 2 
b = s  + 1 - c  + c2-~ (73) 

s + c  

The expansion of ~(s) for small s yields the mean relaxation time as 

1 - 2c + 5c 3 - 5c 4 - 3c 5 + 5C 6 - -  C 7 -~ C 9 - -  C 10 

" ~ -  C4(1 -- C) 3 (74) 

This formula is quite involved, but it is seen directly that 

g ~ c  4 for c < l  (75) 

The exponent increases by one when the length of the clusters is increased 
from m = 1 to m = 2. But still the exponent is too small to account for the 
true asymptotic behavior (which from Monte Carlo simulations is seen to 
be at least ~c5), indicating that the cluster approximation with m = 2 also 
falls short for very small concentrations. It is interesting to note that the 
corresponding asymptotic behavior in the case of the normal factorization 
is given by g ~  1/(2c4), which is smaller than (75) by a factor 1/2. It 
indicates that the compensating factorization method may yield results 
which are somewhat better than the results obtained from the normal 
factorization, at least for small concentrations. 

Also in this case, the behavior of ~b(t~ ~ )  can be calculated. Again 
the rightmost zero of the root in Eq. (71) yields the asymptotic behavior. 
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This time the polynomial under the root is of order 4 in s and we have four 
zeros. For  small concentrations the rightmost singularity can be written as 

17 4 
s l  = - ~ + O ( c  5) (76) 

From this, the asymptotic behavior can be calculated to be 

(~(t ~ oo)  o c t  -3 /2  e -c4/4' for small c (77) 

which has the form of the result (46) of the defect-diffusion model for 
the case m = 1, but with a diffusion constant D = c 2 instead of c. This 
"renormalization" of the diffusion constant can be derived from Eq. (68) for 
k/> 2. Elimination o f / ~  for Is[ ~ c leads to the equation 

I S  + C2(2 - -  C ) ] / ~ 1  = C2(1 _ C ) / ~ k l  i + C2/~1 + 1 (78) 

which represents a discretized diffusion equation with drift term, where 
D = c2(1 - c / 2 ) ~  c 2 and B F =  - - c  3. The origin of the extra factor of c in D 
lies in the fact that the up-spin front propagates only via the "excited" state 
of probability p~l, which has a second up-spin immediately behind the 
front. 

In Fig. 3 we present a plot of ~b(t) for different concentrations, compar- 
ing the (m = 2)-cluster approximations with the exact relaxation functions. 

1 

 za ,on I '\% ' ,  
~ ~ t o r ~ i o o  I \\" \ 

.01 k__._ 
.I I 10 100 1000 

time 

Fig. 3. Double- log plot of ~b(t) for various concentrat ions c. The dashed lines are obtained 
from the cluster approximat ions  with m = 2. Full lines represent the exact results (obtained 
from numerical  results for finite chains ~ which are indistinguishable from exact results for the 
given concentrat ions and time domain;  in the case of c = 0.3 and c =0 .2  the Monte  Carlo 
results are taken). 
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For  c = 0.2 and c = 0.3, the curves for the two factorizat ion methods  are 
somewhat  apar t  f rom each other  and for bo th  concentra t ions  the compen-  
sating factor izat ion yields bet ter  results than  normal  factorization. It is also 
seen that  the curves f rom the compensa t ing  factorizat ion have a mixed 
convergence b e h a v i o r - - f o r  shor t  t imes they are above  the exact curve 
and for long times they are below it. It  seems that  the error f rom normal  
factor izat ion is ove rcompensa ted  for short  t imes and undercompensa ted  for 
long times. 

3.5. C lusters  of  A r b i t r a r y  Length 

We now turn to the general case where the relaxat ion function ~b(t) is 
app rox ima ted  by clusters of length m. The  equat ions of mo t ion  for the 
probabil i t ies  p~m) of clusters of fixed length m can be directly deduced f rom 
the mas te r  equat ion:  

O tp1K, J~,...,J,,-, 

= - CPlk ' j ' ' ' j " - ~  + (1 -- ~,~k'~ iol,l,j,,.-.,j,,- 1 1  

+ j l { _ _ ( l _ _ c ) p l ,  l,j2,...,jm ~+,~pl,J2,...,j,, t,o.,,,pl,j2,...,j,, j,l"t 
k ~ - - k + l  ~ - - k + l  J 

m--2 

+ ~ J e + ~ { - [ c + ( 1 - 2 c ) ; ]  k 
i = 1  

+ [1 -- c - (1 - 2 c ) j i ]  P~'J~'" (1 -Ji),/i+,,.-., Jm-, } 

- [ c + ( 1 - - 2 c ) j , ,  l I P  l ' j~' ' jm ~'~ 

+ [ l - - c - - ( 1 - - 2 C ) j m  3pl,;~,....(l--jm_~),1 (79) - - 1 l a k  

The pairs of loss and gain terms on the r.h.s, of (79) result f rom the flipping 
of spins n u m b e r  k -  1 to k + m - 1. Because of the kinetic constraint ,  there 
is no contr ibut ion f rom the spins number  i < k -  1. Fo r  k = l, in the first 
pair  of loss and gain terms 

-- cp11 'j~''~"-~ + (1 -- c)P~'  I,/l,...,jm , 

which is the cont r ibut ion  of flips of  spin 0; the probabi l i ty  p~,~,Jl,...,Jm-, 
needs to be expressed by the probabi l i ty  P11'J'"'Jm ', as discussed above. 
Using the identity no = - ( 1  - n o ) +  1, we can write the above  contr ibut ion 
a s  

m 1 
- - P l l ' J l ' " " J m - l " b C ( 1 - - C )  H [ 1 - - C - - ( 1 - - 2 c ) j i ]  ( 8 0 )  

i = l  



662 Eisinger and J~ickle 

Also the flip of spin k needs a special comment. We have the contribution 

Jl [- - (1 - c ) P ~  ,],j2"-,j~ ~ + c P  ~ 1,j2,...,j,._~ 

1, j2,..., jm 1,0 l , j 2 , . . , jm- l , l  P~+I +Pk+l 

The last case requiring a special comment is the flip of spin k + m - 1--the 
right end of the cluster. This spin can only flip if its right neighbor is up, 
which is taken into account by prolonging the cluster with a 1. 

Note that the underlined terms in Eqs, (79) are connected to clusters 
of length m + 1 which are to be approximated, The structure of Eq. (79) is 
quite simple. There a r e  2 m - 1  internal cluster states (Jl,...,Jm-~). We 
number these states by binary numbers as discussed in ref. 1, except that we 
reverse the order of (Jl ..... jm-a). The corresponding variables v(,',~ -k  are 
collected m the vector x (m) To form the total vector x, we collect all k ' 
vectors x~ m) into 

" =  (4% X 2 ~ - - . )  

Let A] ml and A {') denote the matrices containing all internal couplings 
between elements of x~ m) and =k>~,'/m) respectively. The sign of these matrices 

0, + \ 1  
\ 

with 

B~ --- - ~ --. 

= -  ~ \  I , B(_ ~) 

\ 

A(~) 

\ 
\ 

\ 
\ 

\ 

\ 
",\ 

J j 

J 

i 

~ - - 1 - c  

cl ~) 

0 

I r I 

I I I 

Fig. 4. V i s u a l i z a t i o n  o f  the  to ta l  s y s t e m  of  e q u a t i o n s  (79). 
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Fig. 5. Semilog plot of ~b(t) for c=0.3.  The Monte Carlo result is compared with cluster 
approximation of different orders m. Normal factorization is used. 

is chosen such that the loss terms are positive and the gain terms negative. 
Collecting all constants for k = 1 into the vector C] m), we can visualize the 
total system of equations as in Fig. 4. For a more detailed discussion of this 
visualization we refer to ref. 6. Clearly, the total matrix is a band matrix 
with a bandwidth of 3 . 2  m 1. It  enables us to use an adequate numerical 
algorithm with a moderate amount  of required storage space. The total 
system of equations can also be transformed into a matrix continued 
fraction, (13'~4) with the effect that the desired storage space is even smaller 
and that it is easier to find the stable fix point. 

In Fig. 5 we present an example of a relaxation function ~b(t) 
calculated from the cluster approximation of order rn ~< 6 and concentra- 
tion c = 0.3. The curves obtained with normal factorization are given for 
rn---1 ..... 6. For  comparison, the corresponding Monte Carlo curve is 
plotted, too. The figure shows that the curves from normal factorization 
convergence for increasing m to the exact ~(t) curve from below. This 
indicates that normal  factorization of cluster functions yields lower bounds 
to the exact relaxation function. 

3.6. Validity of the Approximation 

As seen in Section 3.5, the curves obtained with normal factorization 
converge with increasing rn to ~b(t) from below. This property makes the 
mean relaxation time i - ~ o  ~b(t)dt a well-suited parameter  to discuss the 
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Fig. 6. 
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Mean relaxation time of the infinite chain as a function of c for different cluster 
lengths m compared with the exact curve. 

validity of the approximation. In Fig. 6 we present the functions ~(c) for 
m = 1 ..... 6 together with the corresponding exact curve. Starting from c = 1, 
the curves from the cluster approximation follow the exact curve for 
decreasing c until they fall off below the exact curve (as expected). It is 
important  to note that the points where the approximated ~ are 90 % of the 
exact curve are at c ~- 1/(m + 1). Thus we can say that clusters of length m 
yield good approximations to ~b(t) as long as 

1 
c > - -  (81) 

m + l  

The length m + 1 may be interpreted as the site of the factorized spin counted 
from the first up spin and 1/c is the characteristic length of a fraction of the 
chain in which exactly one up spin is found. It is the only static length scale 
inherent to our model. Therefore, if the clusterlength is chosen such that it 
is very probable to find an up spin inside the clusters, the factorization 
yields useful results. On the other hand, if it is improbable to find an up 
spin inside the clusters, the factorization works on an essential spin and the 
results are poor  approximations. Note that we found not only a criterion 
for the validity of the cluster approximation,  but also a characteristic 
length scale on which clusters are important.  On bigger length scales, we 
may look upon the clusters as objects moving on the chain. 
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3.7. The Asymptot ic  Long-Time Behavior of  ~ ( t )  for  c - ,  0 

As shown above, for the cluster approximat ions  m = 1 and m = 2 the 
long-time form of ~b(t) for c ~ 0, which is given by 

(~(t) ~ eS"/t 3/2 (82) 

corresponds to a defect-diffusion model  with diffusion in a constant  force 
field. The characteristic rate ( - s l )  is determined by a defect-diffusion 
constant  o(m)(c), which depends on the approximat ion  m as 

- sl = D(m)(c) c2/4 (83) 

For  m = 1 and m = 2 the values D (1) -= c and D (a) = C 2 were derived, respec- 
tively (c ~ 0). We conjecture that  the exact asymptot ic  time dependence 
of  ~, which corresponds to the limit m ~ oe, is of the same form (82), (83) 
with a renormalized defect diffusion constant  D(~(c).  Figure 7, in which 
the long-time por t ion of the Monte  Carlo data  for ~b(t) at different concen- 
trations is fitted by Eq. (82), supports  this conjecture. An estimate of 
D(~l(c) for c - o 0  which has a nonanalyt ic  concentra t ion dependence is 
derived from the following considerations. 

In ref. 6 it has been shown by a renormalizat ion procedure in which 
every other  spin is eliminated that  for long times and for c--,  0 the spin 

Fig. 7. 

1 . . . . . . . . .  , . . . . . . . . .  , . . . . .  
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time 
Double-log plot of r for various concentrations c. The dashed lines represent 

asymptotic fits of the form (82). 
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autocorrelation function for a chain with free end of length 2 L -  1 equals 
that for a chain of length L -  1 with the time t rescaled as 

c 
t ~ t ' = ~ t  (84) 

In this renormalization step the set of equations of the cluster approxima- 
tion for clusters of length m = 2 k + 1 is transformed into that for clusters of 
length m' = 2 k- 1 + 1 with the same rescaling (84) of the time. (The reason 
for this particular choice of cluster sizes is this: Since in the renormalization 
step the front up spin at the left edge of a cluster and its left neighbor spin 
are replaced by a "block spin," m must be odd. For the cluster size number 
to be odd after all renormalization steps but the last, the original m must 
be given by 2k+ 1, with integer k.) Repeating this procedure k times, we 
end up with the (m=2)-cluster  approximation with rescaled time 
t ' =  (c/2)kt .  Therefore the diffusion constant O (m) is given by 

k = ( 8 5 )  D (m) = D ~2) c 2 

We assume that D(m),.~ D ~ )  when the cluster length m equals the average 
distance 1/c between neighboring up spins. Evidence supporting this 
assumption is given in the preceding section. This yields our estimate 

D ( ~ ) = c  2 ~ 4  (86) 

It is important to note that the renormalization procedure only works for 
c ~ 0. In ref. 6 it has been shown that the renormalization procedure gives 
increasingly unreliable results when the number of renormalization steps 
becomes larger than lb(1/c). This is the reason for (85) not converging to 
(86) when m ~ ~ .  

The leading factor c ~b(1/c) in expression (86) can be explained by the 
following argument. The propagation of the up-spin front to the left over 
a distance l requires the "excitation" of a minimum number z(l)  of 
additional up spins. For  l =  2 ~ (k = 1, 2, 3,...) this number is given by (6) 

z(2 k) = k +  1 (87) 

This result follows from the recurrence relation 

z(2~+ 1) = z(2 k) + 1 (88) 

in combination with the particular value z(2) = 2. Since z - 1 of the addi- 
tional up spins are auxiliary, we conclude that the rate of propagation to 
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Fig. 8. Comparison of the Monte Carlo data for ~b(t) at c=0.1 with the prediction of 
Eqs. (82) and (86). 

the left over a distance l =  2 ~ is controlled by an extra factor c k for low c 
values. Similarly, the withdrawal of the up-spin front to the right over a 
distance l =  2 k requires a minimum of k additional up spins between the 
front up spin and the up spin at the right end of the interval. Therefore, for 
either direction, the motion of the up-spin front over an up-spin-free inter- 
val of length l =  2 k slows down the proportional to an extra factor c ~ for 
c --, 0. Since the average length of up-spin-free intervals is l /c ,  we conclude 
that the renormalized diffusion constant of the up-spin front (the "defect 
diffusion constant") contains the extra factor c lb(l/c), where l b / = l o g 2  
denotes the binary logarithm. 

In Fig. 8 we show a comparison of the Monte Carlo data for ~b(t) at 
c=0 .1  with the prediction of Eqs. (82) and (86). Fitting the factor of 
proportionality in Eq. (82), we obtain good agreement for the longest times 
0.5. 105< t ~< 1.5.105. Unfortunately, this is not a test of our estimate, 
Eq. (86), since in this time region the exponent Isll t in expression (82) is 
negligible, because our estimate yields Istl = 10-9. 

4. S U M M A R Y  A N D  C O N C L U S I O N S  

In this paper, the hierarchically constrained kinetic Ising chain first 
presented in ref. 1 is reviewed and three approximation methods for the 
calculation of the single-spin autocorrelation function are presented. The 
results can be summarized as follows: 
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1. The standard approximation schemes, the effective-medium 
approximation (EMA) (Section 2.1) and the mode-coupling approximation 
(MCA) (Section 2.2), are not suited for our model. Results are not only 
quantitatively inaccurate, but reveal qualitatively erroneous features. 
Namely, the EMA exhibits a blocking transition for c < 0.5 [-see property 
Eq. (8)] and the relaxation function from the MCA diverges when c <0.5 
(see B in Section 2.2 and Fig. 1). For these approximation schemes similar 
results have also been found for other kinetic Ising models with kinetic 
constraints.(8,9) 

2. The cluster approximation (Section3) was designed in close 
relation to our model and is clearly more successful in yielding good 
results than the other two (see Fig. 2 and 3 for the first two orders of the 
approximation). The order of the approximation can be increased in a 
straightforward manner. This yields results converging to the exact solution 
for all concentrations (see Fig. 5). Equation (81) gives an estimate of the 
required order m of the approximation as a function of concentration. It 
should be worthwhile trying to construct a similar approximation method 
for related models. 

3. The cluster approximation has also been useful for clarifying some 
general aspects of the hierarchical spin model. These concern the connec- 
tion with defect-diffusion models. In Sections 3.3 and 3.7 we found that in 
the long-time limit, the clusters can be viewed as defects diffusing on the 
chain. From that the asymptotic long-time form of the spin-autocorrelation 
function can be infered to be ~b(t)~eSlt/t 3/2 [-see Eqs. (64), (77), and (82) 
and Fig. 7]. The renormalized diffusion constant (86) occurring in the 
asymptotic formula was estimated using the result of a renormalization 
procedure described in ref. 6. 

With these results, the time dependence of the spin-autocorrelation 
function ~b(t) of the semi-infinite hierarchical spin chain can be charac- 
terized as follows. There are three time regimes, in each of which ~b(t) can 
be approximated by a Kohlrausch Williams-Watts function 

~bKww(t) = exp( -- It/z]/~) 

with exponents 0 < fl ~< 1 and relaxation times z (Fig. 9). 
From the master equation we infer that ~b(t) decays exponentially 

(fl = 1) like e xp ( - c t )  at short times. For c = 0.1, for example, this expres- 
sion is a good approximation to ~b(t) for the first 5 % of its decay from the 
initial value of one. A short-time behavior of this sort is common to many 
kinetic Ising models. According to our asymptotic formulas (82), (86), 
the long-time behavior of ~b(t) is also dominated by an exponential. The 
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Fig. 9. KWW plot of ~b(t) for various concentrations c. For c = 0.1 the three time regimes are 
sketched with dashed lines and the respective KWW-exponents are written down. 

algebraic factor t 3/2 can be considered as a logarithmic correction to the 
exponent. Between the short-time and the long-time domains there is a 
crossover regime, where ~b(t) can again be fitted to the KWW formula over 
an extended time interval. However, in this regime the effective exponent/~ 
decreases markedly with decreasing up-spin concentration c. Possibly /~ 
goes to zero for c-*0 as [In(l/c)] 1. For c=0.1, the KWW formula with 
/3=0.26 gives a good fit of the decay of O(t) from about 95 to 50% of its 
initial value (see Fig. 9). The transition from this intermediate to the 
asymptotic long-time regime is very slow, for low concentrations in par- 
ticular. Therefore the long-time regime is difficult to reach by Monte Carlo 
simulation. This is related to the difficulty of measuring the asymptotic 
decay of the relaxation function for real systems with slow cooperative 
dynamics. 
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NOTE A D D E D  IN P R O O F  

I n  the  m e a n t i m e  it cou ld  be p roved  (J. J~ickle, J. Non-Crys t .  Solids, to 
be  p u b l i s h e d )  tha t  the s o l u t i o n  of  the M C A - e q u a t i o n  of  m o t i o n  (19, 21) 
n o t  on ly  n o  l onge r  decays  m o n o t o n i c a l l y ,  b u t  even  diverges e x p o n e n t i a l l y  

for t ~ oe at u p  spin  c o n c e n t r a t i o n s  c < I/3.  
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